Using the current seasonal cycle to constrain snow albedo feedback in future climate change

نویسندگان

  • Alex Hall
  • Xin Qu
چکیده

[1] Differences in simulations of climate feedbacks are sources of significant divergence in climate models’ temperature response to anthropogenic forcing. Snow albedo feedback is particularly critical for climate change prediction in heavily-populated northern hemisphere land masses. Here we show its strength in current models exhibits a factor-of-three spread. These large intermodel variations in feedback strength in climate change are nearly perfectly correlated with comparably large intermodel variations in feedback strength in the context of the seasonal cycle. Moreover, the feedback strength in the real seasonal cycle can be measured and compared to simulated values. These mostly fall outside the range of the observed estimate, suggesting many models have an unrealistic snow albedo feedback in the seasonal cycle context. Because of the tight correlation between simulated feedback strength in the seasonal cycle and climate change, eliminating the model errors in the seasonal cycle will lead directly to a reduction in the spread of feedback strength in climate change. Though this comparison to observations may put the models in an unduly harsh light because of uncertainties in the observed estimate that are difficult to quantify, our results map out a clear strategy for targeted observation of the seasonal cycle to reduce divergence in simulations of climate sensitivity. Citation: Hall, A., and X. Qu (2006), Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in ...

متن کامل

On the Persistent Spread in Snow - Albedo Feedback

Snow-albedo feedback (SAF) is examined in 25 climate change simulations 5 participating in the Coupled Model Intercomparison Project version 5 (CMIP5). SAF 6 behavior is compared to the feedback’s behavior in the previous (CMIP3) generation of 7 global models. SAF strength exhibits a fivefold spread across CMIP5 models, ranging 8 from 0.03 to 0.16 W m−2 K−1 (ensemble-mean = 0.08 W m−2 K−1). Thi...

متن کامل

Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncer...

متن کامل

Improving predictions of summer climate change in the United States

[1] Across vast, agriculturally intensive regions of the United States, the spread in predictions of summer temperature and soil moisture under global warming is curiously elevated in current climate models. Some models show modest warming of 2–3C and little drying or slight moistening by the 22nd century, while at the other extreme are simulations with warming as large as 7–8C and 20– 40% redu...

متن کامل

Quantifying Snow Albedo Radiative Forcing and Its Feedback during 2003-2016

Snow albedo feedback is one of the most crucial feedback processes that control equilibrium climate sensitivity, which is a central parameter for better prediction of future climate change. However, persistent large discrepancies and uncertainties are found in snow albedo feedback estimations. Remotely sensed snow cover products, atmospheric reanalysis data and radiative kernel data are used in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006